

Teil 2: Beschleunigungsmessung mit mitbewegten Funksensoren – aus Sicht des ruhenden Beobachters

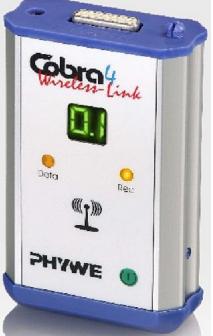
Dr. Thomas Wilhelm, Lehrstuhl für Physik und ihre Didaktik, Universität Würzburg

Bielefeld 31.3.2010

Gliederung

- 1. Funkbeschleunigungsmessung
- 2. Beispiele
 - 1. Gleit- und Rollreibung
 - 2. Drittes newtonsches Gesetz
 - 3. Fall mit Luftreibung
 - 4. Kreisbewegungen
 - 5. Kurvenfahrten
 - 6. Schwingungen eines Stabpendels
 - 7. Gehen und Laufen

• Bisher:


- Die Daten eines mitgeführten Sensors müssen durch ein Kabel zum Computer übertragen werden oder die Bewegung wird durch Fäden an einen ruhenden Sensor übertragen. Beides stört die Bewegung.
- Berührungslose Messung mit Ultraschall- oder Lasersensor ist nur eindimensional möglich.
- Videoanalyse ergibt sehr ungenaue Beschleunigungswerten.
- Vorteile der Funkübertragung:
 - störungsfreie Beschleunigungsmessungen,
 - Bewegungen mit großem Bewegungsradius (Alltag, Sport) messbar,
 - Kabel ist ein Unfallrisiko.

- Vier Möglichkeiten:
 - Cobra4 mit measure von Phywe
 3D-Beschleunigungsmesser mit Wireles-Link
 Übertragung per Funk, bis zu 99 Sensoren pro PC

- Vier Möglichkeiten:
 - 2. Pasport mit Datastudio von Pasco

3D-Beschleunigungsmesser mit AirLink Übertragung per Bluetooth, nur 1 Sensor pro PC

Problem: Nur ein Funksensor anschließbar!

Vier Möglichkeiten:

3. Wii Remote von Nintendo mit Phymote von Didaktik München

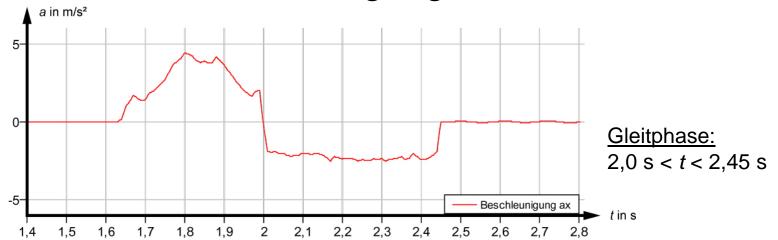
Gamecontroller von Nintendo (< 40 €) mit 3D-Beschleunigungsmesser, Übertragung per Bluetooth (< 10 m), mehrere Sensor pro PC möglich, Software Phymote ist kostenlose Freeware: www.phymote.org

Problem: Keine anderen Sensoren!

Vier Möglichkeiten:

4. IPone von Apple mit Software (Uni Würzburg?)

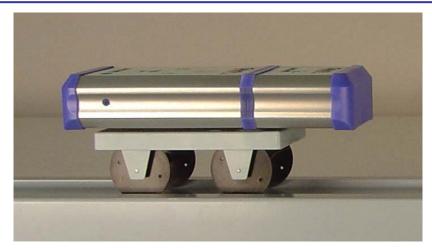
3D-Beschleunigungsmesser mit verschiedenen Apps


Problem: Übertragung auf PC und gutes App fehlt noch

2.1 Gleit- und Rollreibung

- Gleitreibung:
 - Sensor auf ebenen Oberfläche anschieben und gleiten lassen (Coulombreibung).
 - ⇒ konstante Beschleunigung

– Aus
$$\vec{F}_{GR} = \mu_G \cdot \vec{F}_N$$
 folgt: $\mu_G = \frac{|\vec{a}_{GR}|}{g}$

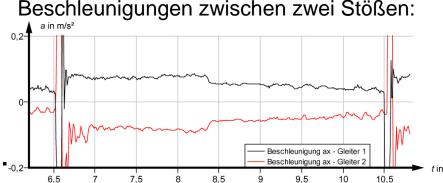


2.1 Gleit- und Rollreibung

Rollreibung:

Cobra4-Sensor auf
 Wagen anschieben
 und rollen lassen
 (Coulombreibung)

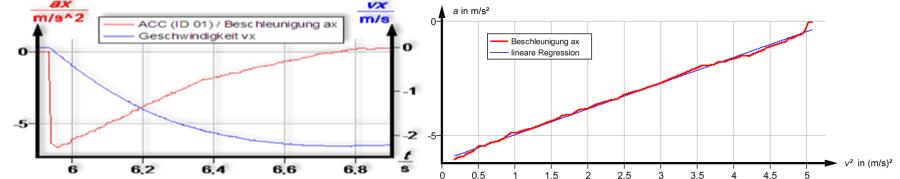
⇒ konstante Beschleunigung


– Aus
$$\vec{F}_{RR} = \mu_R \cdot \vec{F}_N$$
 folgt: $\mu_R = \frac{|\vec{a}_{RR}|}{g}$

2.2 Drittes newtonsches Gesetz

- Standardversuch: zwei Schüler auf zwei Skateboards (nur einer zieht aktiv).
- Probleme: unterschiedliche Reibungskräfte, nur die Ortsänderung nicht Beschleunigung sichtbar.
- Lösung: zwei Luftkissengleiter mit Beschleunigungssensoren, auf einem ein kleiner Gleichstrommotor, der Faden aufwickeln kann; Feder an einem Gleiter
- Gleiter bewegen sich aufeinander zu, stoßen, fahren wieder auseinander
- Je gegengleiche konstante Beschleunigungen.

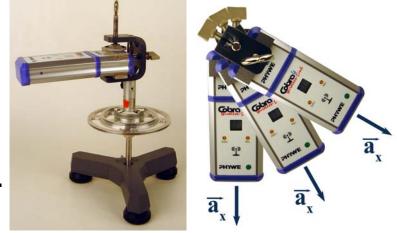
2.3 Fall mit Luftreibung


Sehr wichtig: Diskussion der geschwindigkeitsabhängigen

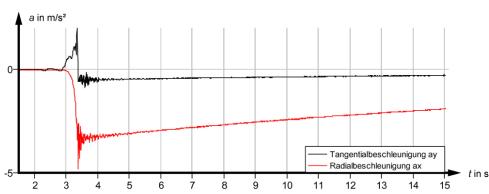
Luftreibung

 Möglichkeit: Fallbewegungen mit Luftreibung

- starrer Schirm mit Beschleunigungssensor
- Beschleunigung integrieren,
- ergibt konstante Geschwindigkeit.


2.4 Kreisbewegungen

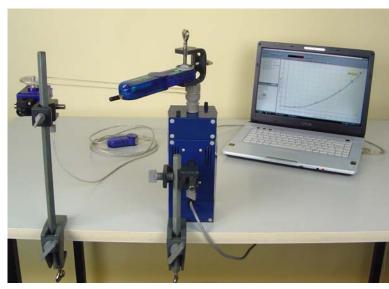
 Nur bei zweidimensionalen Bewegungen wird der vektorielle Charakter der Bewegungsgrößen deutlich.

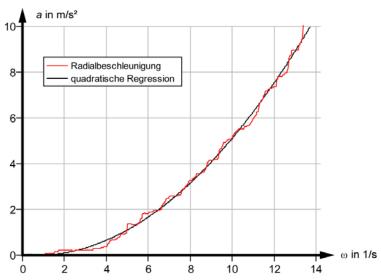

Sinnvoll: Zerlegung der Beschleunigung in Komponenten

tangential und radial zur Bahn

 Mit einfachem Aufbau Radialund Tangentialbeschleunigung messbar. Achsen zeigen in radiale und tangentiale Richtung.

- Beispiel: Einmaliges Anstoßen
- Tangentialbeschleunigung durch Reibung konstant.





2.4 Kreisbewegungen

- Abhängigkeit der Radialbeschleunigung von der Winkelgeschwindigkeit: Beschleunigungssensor auf einem Experimentiermotor und Winkelgeschwindigkeit messen.
- Quadratischer Zusammenhang zwischen
 Zentripetalbeschleunigung und Winkelgeschwindigkeit

2.5 Kurvenfahrten

- Einfache Bewegungsanalyse eines ferngesteuerten Modellautos
- Ergebnisse:
 - Anfahren bzw. Abbremsen ergibt Beschleunigungen in bzw. gegen die Fahrtrichtung
 - Kurvenfahrt ergibt Beschleunigung in radialer Richtung
 - Vier Kurven:

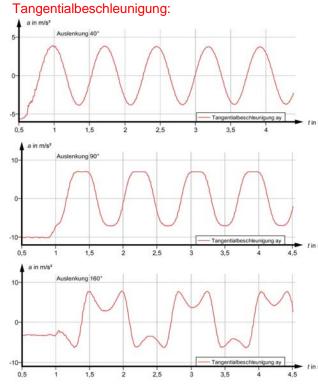
 Tangentialbeschleunigung ax
 Radialbeschleunigung ay

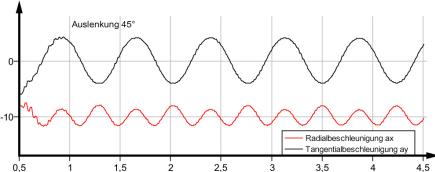
10

11

12

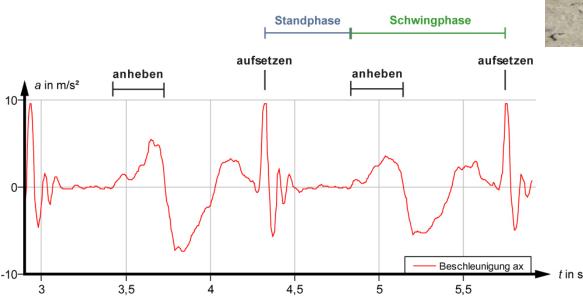
Beispiel:


 Nach Anfahren
 nur noch
 Kurvenfahrten
 rechts – links



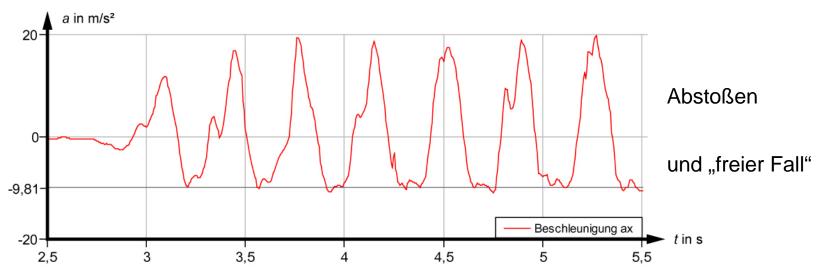
2.6 Schwingungen eines Stabpendels

- Harmonische und anharmonische Schwingungen sehr leicht aufnehmbar.
- PHYWE O
- Hier Verlauf der Tangentialbeschleunigung des Pendels für drei verschiedene Auslenkungen:
- Radialbeschleunigung: Anteil der Erdbeschleunigung plus geschwindigkeitsabhängige Zentripetalbeschleunigung.
 Periodendauer nur die Hälfte
 Tangentialbeschleunigung.



2.7 Gehen und Laufen

- Bewegungen wie Gehen und Springen können analysiert werden
- Gehen: sehr komplex
- Ein Schritt: "Standphase" während Fuß den Boden berührt und "Schwingphase" während Fuß in Luft


 Diesen Verlauf nutzen moderne "Schrittzählern"

2.7 Gehen und Laufen

- Gehen: immer ein Fuß Kontakt mit dem Boden
- Laufen: beide Füße über eine bestimmte Zeitspanne in der Luft.
- Versuch: Sensor in der Nähe des Schwerpunktes zum Beispiel an einem Gürtel befestigt.
- Schwerpunkt wird abwechselnd nach oben beschleunigt und fällt wieder runter.

Kontakt

www.thomas-wilhelm.net

info@thomas-wilhelm.net